Pre-EOC Assesment Geometry #1 **Wahkiakum School District**

GEOM Page 1

- 1. What is the converse of "If there are clouds in the sky, then it is raining"?
 - A If it is raining, then there are clouds in the sky.
 - B If it is not raining, then there are clouds in the sky.
 - C If it is raining, then there are no clouds in the sky.
 - D If it is not raining, then there are no clouds in the sky.
- 2. Given LM = MP and L, M, and P are collinear, which of the following BEST describes the relationship of L, M, and P?
 - A $\overline{LM} \cong \overline{MP}$
 - B M is the midpoint of \overline{LP} .
 - C M bisects \overline{LP} .
 - D All of the above
- 3. Two congruent triangles have the following corresponding parts: $\overline{RS} \cong \overline{UV}$, $\overline{RT} \cong \overline{UW}$, and $\angle R \cong \angle U$. Which is NOT necessarily a correct congruence statement?
 - $A \triangle RST \cong \triangle UVW$
 - $\mathsf{B} \ \triangle \mathit{STR} \cong \triangle \mathit{VWU}$
 - $C \triangle TRS \cong \triangle VWU$
 - $D \triangle TRS \cong \triangle WUV$
- 4. What postulate or theorem proves $\angle K \cong \angle M$?

- 5. Two angles of a triangle measure 22^o and 53^o. What is the measure of the third angle?
 - A 15⁰

C 75°

B 25°

- D 105^o
- 6. Find the values of the variables. Give your answers in simplest radical form.

Find $m \angle D$ to the nearest degree. 7.

Given: X is the midpoint of $AC \cdot \angle 1 \cong \angle 2$ 8.

Prove: X is the midpoint of BD.

- What is the inverse of the conditional statement "If a number is divisible by 6, 9. then it is divisible by 3"?
 - A If a number is divisible by 3, then it is divisible by 6.
 - B If a number is not divisible by 6, then it is not divisible by 3.
 - C If a number is not divisible by 3, then it is not divisible by 6.
 - D If a number is not divisible by 6, then it is divisible by 3.
- 10. What is the length of the longest side of the triangle?

A 8.5

C 19

B 26

- D 40
- 11. **Given:** ABCD is a parallelogram, $\overline{AC} \perp \overline{BD}$, and $\overline{AB} \cong \overline{CD}$.

Conclusion: ABCD is a square.

What can be said about the conclusion?

- A Valid
- B Not valid
- 12. Which of the quadrilaterals MUST be parallelograms?

- A A only
- B B only

- C Neither A nor B
- D Both A and B

Use the partially completed two-column proof for the next three problems.

Given: \overline{GJ} bisects $\angle FGH$, $\overline{FG} \cong \overline{HG}$

Prove: $\overline{FJ} \cong \overline{HJ}$

Proof:

Statements	Reasons
1. \overline{GJ} bisects $\angle FGH$.	1. Given
$2. \ \angle FGJ \ \cong \angle HGJ$	2. Def. of ∠ bisector
3. FG ≅ HG	3. Given
$4. \ \angle F \cong \angle H$	4?
$5. \ \Delta FGJ \ \cong \Delta HGJ$	5?
6. <i>FJ</i> ≅ <i>HJ</i>	6?

- Which reason belongs in Step 4? 13.
 - A Isosc. △ Thm.
 - B Conv. of Isosc. \triangle Thm.
 - C ASA
 - D Def. of ∠ bisector
- 14. Which reason belongs in Step 5?
 - A Isosc. \triangle Thm.
 - B ASA

D HL

C CPCTC

- - Which reason belongs in Step 6?
 - A Isosc. \triangle Thm.
 - B ASA
 - C CPCTC
 - D Def. of ∠ bisector

15.

Given parallelogram JKLM which is valid? 16.

- A If $\angle JXK \cong \angle KXL$, then JKLM is a rhombus.
- B If $\triangle JXM \cong \triangle JXK$, then JKLM is a square.
- C If $\triangle JXM \cong \triangle LXK$, then JKLM is a square.
- D If $\angle MJK \cong \angle KXL$, then JKLM is a rectangle.
- 17. When the angle of elevation of the sun is 50°, a flagpole casts a shadow that is 16.8 feet long. What is the height of the flagpole to the nearest foot?

- A 14 ft
- B 20 ft
- 18. A cottage has a gable roof. To the nearest foot, how wide is the cottage?

- A 12 ft
- B 24 ft
- C 35 ft
- D 70 ft

GEOM Page 6 19. What is the area of $\triangle JKL$ if the coordinates of J, K, and L are J(0, 0), K(0, 3), and L(4, 0)?

- A 6 units²
- B 6 units

- C 12 units²
- D 12 units

Use the partially completed two-column proof for the problem below. Given:

Prove: $\triangle GHF \cong \triangle MOL$

Proof:

Statements	Reasons
1. GF ≅ ML , FH ≅ LO , GH ≅ MO	1. Given
2. ∠F≅ ∠L	2?
3. ∠H≅ ∠O	3. Given
4. ∠G ≅ ∠M	4?
5. \triangle GHF \cong \triangle MOL	5?

- 20. Which reason does NOT belong in the proof?
 - A Def. of $\cong \triangle s$
 - B Third \(\Delta \) Thm.
 - C Rt. $\angle \cong$ Thm.
 - D CPCTC

21. Which points are the vertices of a rectangle that is NOT a square?

A (-10, 10), (0, 0), (14, 2), (4, 12)

B (-4, 1), (-1, 4), (5, -2), (2, -5)

C (2, 2), (6, -2), (2, -6), (-2, -2)

D Not here

22. M is the midpoint of \overline{RS} and R has coordinates (2, 5). M has coordinates (6, 9). Find the coordinates of S.

A (4.5, 6.5)

C (4, 4)

B (10, 13)

D (16, 16)

Use the partially completed two-column proof for the two problems below.

Given: $\overline{JK} \cong \overline{LK}$; $\angle JYL$ and $\angle LXJ$ are rt. $\angle s$.

Prove: $\overline{JY} \cong \overline{LX}$

Proof:

Statements	Reasons
1. ∠ <i>KJL</i> ≅ ∠ <i>KLJ</i>	1?
2. $\overline{JL} \cong \overline{LJ}$	2?
3. ∠JYL and ∠LXJ are rt. ∡.	3. Given
4. ∠ <i>JYL</i> ≅ ∠ <i>LXJ</i>	4?
$5. \triangle JYL \cong \triangle LXJ$	5?
6. $\overline{JY} \cong \overline{LX}$	6?

23. Which justification belongs in Step 1?

A Isosc. \triangle Thm.

B Reflex. Prop. of \cong

C Rt. $\angle \cong$ Thm.

D CPCTC

24. Which justification belongs in Step 6?

A Isosc. \triangle Thm.

C Rt. $\angle \cong$ Thm.

B HL

D CPCTC

- 25. What should you do if you want to double the area of a rectangle?
 - A Double either the length or the width but not both.
 - B Double both the length and the width.
- If the radius of a circle is multiplied by 3, which is true? 26.
 - A The circumference is tripled.
 - B The area is tripled.

Use the Given information for the two problems below.

Given: An isosceles triangle ABC with $\overline{AB} \cong \overline{BC}$ and a perpendicular bisector \overline{BD} from B to \overline{AC} .

Position the figure in the coordinate plane and assign coordinates to each point 27. so proving that the area of $\triangle ABD$ is equal to the area of $\triangle CBD$ using a coordinate proof would be easier to complete.

GEOM Page 9 28. Write a coordinate proof to prove that the area of $\triangle ABD$ is equal to the area of $\triangle CBD$.

29. An air-traffic controller at an airport sights a plane at an angle of elevation of 34°. The pilot reports that the plane's altitude is 3200 feet. To the nearest foot, what is the horizontal distance between the plane and the airport?

A 4744 ft B 2159 ft

30. The altitude to the hypotenuse of a right triangle has a length of 12. What could be the lengths of the two segments of the hypotenuse?

A 2 and 6

B 2 and 8

C 6 and 24

D 6 and 30

GEOM Page 10